
Comment Anywhere

Week 11 Report, 4/10/2023

Karl Miller

 On April 3rd, I created an account at Kamatera for cloud hosting. I purchased a single

virtual 1A CPU, 2048 MB of virtual RAM, and a 20GB virtual SSD for $6/month. I first

attempted to deploy in the same way I had been developing; by running, on our cloud server, a

postgres docker container and then connecting to the exposed container port with our HTTP

server, written in Go, running as a regular system process.

 I was able to ssh and scp into the server, copying our source code over. I was able to

quickly install docker and run the database without issue. It took a few steps to install Go on the

server; I had to curl the tarball and add go’s bin directory to the path to access the global Go

installs I needed, such as migrate. The environment-variable driven Makefile already created for

development largely worked well for deployment.

 At this point, running the server and configuring the front end’s environment variables to

point to the server yielded a seemingly working comment anywhere back end. Unfortunately, I

quickly realized that when I closed my SSH terminal, the server attached to it would terminate

and the back-end would go down. I either had to keep my SSH terminal up permanently or run

the process on the server headless.

 On April 7th, I tried several solutions for running the server process headless, including

systemctl and nohup. They were all buggy, however, and they felt like hacky workarounds that

involved a lot of SSH to get working properly, even with well-configured make commands. I

knew that a robust solution would be to reutilize the technology we were already using for the

postgres database and create a container for the HTTP server as well.

 I was able to create a custom image that compiled and ran the server fairly quickly, but I

ran into issues when it came to connecting to the database. The server was expecting the

database to be at a localhost port, but now that they were in separate containers, they were no

longer sharing a localhost. The solution was docker network, which allows networked containers

to reference each other’s container names in place of localhost to access each other’s exposed

ports. Building this image on the server and running it yielded a working and persistent HTTP

server which now serves the same comment anywhere data to any front end requesting it.

 I made some changes to the source code. I added various Makefile commands to the back

end for configuring the network and building the image. I added several optional flags that can

be parsed by the server when it runs. The flag –nocli=true starts the server without starting the

command-line interface. The flag –env=/path/to/.env gives the server a custom path to an env

variable, in case the .env file is not located in the current working directory at the time the server

is started. The flag –docker=true starts the server in docker mode, generating a different

connection string based on the database image name set in the .env file, allowing a container

instance of the server to utilize the docker network. These flags mean that the server can be run

in development exactly as it has been but can also be deployed successfully in docker or as a

regular server process.

 On April 8th, I also made some tweaks on the front end. I fixed an issue with the navbar

pane not displaying. I added another .env file called .env.production which vite, our front-end

packing and developing system will read when it is set to –mode production. I added some npm

scripts utilizing this. This allows us to easily test the front end against a local instance of the

server or to connect to our remote server, depending on our development needs.

 Next, I would like to standardize a process for backing up our database in case the server

ever goes down. I also want to implement the email features for password recovery and account

authentication. Further work can also be done on the front end to make it prettier, though Luke

made some large strides in that area last week.

